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0. Introduction
Vague conv.

Jp €% p(de) set of all probability
unif. conv. L P measures on
CF ——
Bochner
positive definite
uniformly continuous F(x) = u((a,b]) =

»(0) =1 p((=o0, x]) F(b) — F(a) unif. conv.
Inversion Fine case c
Formula g

—

al Lévy increasing Lipschitz
set of all probability f(—o0) =0, f(4+o0) =1
distribution functions on R
Discontinuous pointwase conv.

at points of continuity

Figure 1: The spaces P, F,Cy,

Notations: yu < F < LF = f (unless oterwise stated)
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Computabilities on F

We had treated Fine computability and effective Fine convergence

We seek: computability and effective convergence on F

relations to Fine computabilities on F

relations to computability and effective convergence on P
Translated Dirac measure 6 1 is computable, but the corresponding

probability distribution functions is not Fine computable.

We have an example of probability distribution function F' such that

F(0) is not computable, but the corresponding u is computable
(Example 4.2)

We propose Lévy computability and effective Lévy convergence on F.

<
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Convergence on P

motivation

convergence < determining class <» computability

a class A of functions or of sets
is a determining class if u(n) = v(n) for Vn € A implies p = v
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1. Classical Theory about probability measures on R (Summary)

Probability Distribution Functions are characterized by
(F-i) monotonically increasing
(F-ii) right-continuous
(F-iii) F(o0) =1, F(—o0) =0

Notations:
JF: the set of all probability distribution functions
C.: the set of all continuous functions with compact support

Cy: the set of all bounded continuous functions

p(f) = Jg f(z)p(d)
{g¢}: a dense sequence of C,

{ge}-metric : dig,y(p,v) =Y 27(|u(ge) — v(ge)| A1)

Q &
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The following converences are equivalent ([1], [6]).

(1) wm(f) — 1(f) Vf el (vague)
(i)  pm(f) — n(f) Vf€EC (weak)
(iii) liminf,, p,(G) > u(G) VG: open domain theory
S2007[23]
(iv) digy(msp) — 0 {g¢}: dense in C, W1999[27][0,1]
0,1
(iii") liminf,, p,,(I) > p(I) VI: open interval W1999[27]
Intervals SS2005[22]
R
(V)  em(t) — p(t) for any t
(vi) Fp(x) — F(x) Vz a point of continuity of F
& p({z}) =0, {(—o0,a]}
(vii) dp(F,,,F)— 0 Lévy

(other metrices: cf. [2])
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2. Lévy height and Lévy metric Lévy [11], Ito [6]
Notations:
Gr = {(z,y) | F-(x) <y < F(x)), v € R} (F-(z) =lim F(y) )

VvVt € R, (x(t),y(t)) = the unique crossing point of X +Y =t with Gp

Definition 2.1 Lévy height: LF(t) = y(t)

Definition 2.2 Lévy metric (distance): dp(F,G) = sup |LF(t) — LG(t)]
teR

Definition 2.3 Lévy convergence: dp(F,, F) — 0

Remark 2.4 dp(F,G) is equal to the Lévy(-Prokhorov) metric, that is,
di(F,G) =inf{e >0 | F(x —€¢) —e < G(x) < F(x + €) + €, for all x}

Q &
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a b @ F_(2)t F(a)
—t— f(t)

F(a) F_(b)F(b) F_(z)t F(x)

Figure 2: F and LF
Put LF(t) = f(t).

D, = {t |z =t— f(t)}
sup{f(t) | t € D} —inf{f(¢t) | t € D} = the jump of F at x
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Properties of Lévy height

Let C;, be the set of functions which satisfy the following:
(Li) 0< f(t) — f(s) <t—sifs<t.
(Lii) lim;,_ f(¢t) = 0.
(Liii) lim;_, o f(t) = 1.

Proposition 2.5 L: F — Cr one-to-one and onto

Cr : closed convex subset of C, w.r.t. the sup-norm (distance) d

Hence, (Cr,d~) is complete
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Properties of F, F_, LF D, = [F_(x), F(x)]

e F(x) =z + F(x) is strictly increasing and continuous
LF(t) = F(F~(t))

[F_(z), F(x)) N Range(F) = ¢

F~1(t) is computable if F is computable

F(x) = f(supD,)

f(t) =t — f(t) is a nondecreasing continuous function from R onto R
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Example 2.6 Dirac measures d,, D,: prof. dist
e Dy(x)=0ifxr<aand=1ifx>a

0 if t<a
o LD,(t)y=< t—a if a<t<1l+a
1 if t>14a

° dL(Da,Db) = doo(LDa,ﬁDb) = |CI, — b| A1

. function

12



<13Nancy> 13
3. Computability on P
We employ computable notions on R by Pour-El and Richards.

Definition 3.1 {u,,} is computable
= {pm(fr)} is computable for any computable sequence f,,

with compact support
(L(n) s.t. fo(x) =0 if || > L(n) for some recursive L(n))

Definition 3.2 {u.,,} converges effectively to u

= {pm(fn)} converges effectively to {u(f.)}
for any computable {f,} with recursive compact support

Notation: {p,,} — p
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weakly: computable sequence f,, with compact support
— effectively bounded computable {u(f,)}
JdM (n): recursive such that |f,(z)| < M(n)

Notation: {p,} — p

Proposition 3.3
(1) {pm} is computable & {p.,} is weakly computable
(2) Assume {un,} and p are computable. Then,

{pm} — & {un} — p



<13Nancy> 15

4. Lévy computabilities

Definition 4.1 {F,} is said to be Lévy computable
= {LF,} is computable.

Intuitively,
Lévy computability means that we can draw the graph Gr effectively.

That is, (f(t), f(t)) is a one parametric representation of Gp,
in the sense of Skotokhod [24].  (f(t) =t — f(t))
(Section 6, P. 21)

Next Example shows that there exists a probability measure v:
v is computable
G(0) is not a computable real



<13Nancy>

Example 4.2 (Example 3.4 in [16])
a: one-to-one recursive with non-recursive range.

d=52 220 <1, d,=%7",2720 (dy =0)

VvV = (1 — d)50 + Z 2_a(i)52—(z’—1), Vy, = (1 — dn)50 —|— Z 2—a(i)52_(i_1)
] =1

1=1
G and {G,}: the corresponding probability distribution functions

9—a(1)

2—a(2)

Figure 3: Graph of G and LG

16
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The followings holds:

e {G,}: monotonically decreasing w.r.t. n, and converges to G
e {LG,}: monotonically decreasing w.r.t. n, and converges to LG

o LG(t) =LG,(t) ift<1—dort>1—d,+ 2" "D
#on (1 —d,1 —dyy +270)

e {L£G,} is computable
We can prove that {LG,} converges to LG effectively uniformly.
This implies that LG is computable and G is Lévy computable.

G is not continuous, Fine continuous,

not Fine computable, Lévy computable.
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Theorem 4.3 Assume that {F,,} is continuous. Then

{F,.} is Lévy computable < {F,,} is computable.

Proposition 4.4 pu(g) = [, g(x)dF(z) = [, g(f(t))df(t) for all g € Cs

Theorem 4.5 If {F,,} is Lévy computable, then {u,,} is computable.

Lemma 4.6 D,: the probability distribution function of d,

LF is computable, p is positive omputable, a 1s computable, then
(1) L(pD,) is computable.

(2) L(pD, + F) is computable.

(3) LF(t) < L(pDa+ F)(t) < p+ LF(t).

18



P—C ulg) = fag@)dF(z) = [g(F(2))df(?)

P—F

~— c,2— ™

wc,2*”

0 % \

e_gnC oigm p(w_,) < F(e) = p(X(—oo.c) < pu(w],,)

Figure 4: @iﬂ(m) and w_,, ()
If o is computable and ¢ is computable,
then p(w_,) and p(w],) are computable.

F(c) is right (lower) computable
but we cannot derive the computability of F(c) (4 continuity)
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5. Lévy Computability and Fine Computability for Probability

Distribution Functions

Fine topology is generated by {I(k,%) = 2%, Z;—,}) | ke N,i € Z}
J(x, k) is the unique I(k,?) which contains .
Fine computability is defined with respect to this Fine topology.

{e;} is an effective enumaration of dyadic rationals.

Definition 5.1 A sequence of functions {f,} is said to be
Fine computable if it satisfies
(i) (Sequential Fine computability)
{fn(x,)} is computable for any Fine computable {z,,}
(ii) (Effective Fine Continuity)
There exists a recursive function a(n, k, ) such that
(ii-a) = € J(e;, a(n,k,i)) = |fo(x) — fu(es)] < 27F
(ii-b) Ui, J(es, a(n, k,i)) = [0,1) for each n,k
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uniformly Fine computable if a(n, k,?) does not depend on ¢
Theorem 5.2 {F,,} ts Fine computable = {F,,} is Lévy computable
First, we prove the following special case.

Proposition 5.3 {F,,,} is uniformly Fine computable
= {F,,} is Lévy computable.

Outline of the proof of Proposition 5.3

Lemma 5.4 If {pn} is computable,
then there exists a recursive function L(m,k) such that
pm(wy) > 1 — 27, equivalently p(wt) < 27%, for all n > L(m, k).

(For a single F) «a(k): mopdulus of effective uniform Fine continuity

note: F_(x) is computable if x is Fine computable
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Let {t,} be computable
Vk, the set of fite open intervals
(=00, —L(k) +27%), (L(k) — 27*, o),
(F(—L(k) +i272®) — 2=k F (—L(k) + (s + 1)27*®) 4 2. 27F)
(0 <4 <2 L(k)22%)

(F_(—L(k) 4+ i272®) — 2% F(—L(k) 4+ i27~®) 4 27F)

(F(—L(k) +i272®)) — F_(—L(k) + i27*®) > 27F)
is an open covering of R
We can define effectively a sequence {r,} such that
1 (bn) — Tl < 27 :
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Outline of the proof of Theorem 5.2

Proposition 5.5 ([15]) Let {f.} be a Fine computable sequences of
functions. Define

Pmn(T) = Z?:Bl fm(jz_n)XI(n,j)(w)'

Then, {¢Ymn} Fine converges effectively to {fm}.

We can prove that {Lp,} converges effectively uniformly to LF'.
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6. Effective Lévy Convergence

Definition 6.1 {F,,} is said to Lévy converge effectively to F

A

= dg(F,., F) converges effectively to zero {F..} Ny

Special case of Skorokhod M;-convergence for GADLAC

A pair of functions (A(t),&(t)) is said to be a parametric representation
of the graph of Gr = {(z,2) | F_(x) < z < F(x), € R}

if Gr = {(A(t),&(¢) | t € R}, &(¢t) is continuous and A(t) is continuous
and monotonically increasing. (@), £(t)))

{F,,} M; converges to F': if there exist a parametric representation
(A(t),&(t)) of Gr and a sequence of parametric representations
(Am(t), &€m(t)) of {GF_} respectively, such that

Tim {sup; [€,(£) — £()] + sup, [Am(t) = A(®)[} = 0
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Theorem 6.2 Let {um}, p € P. Then {F,,} L F= {pm} =

use Proposition 4.4 p(9) = [ g(x)dF(z) = [, g(£(t))df (t)

Theorem 6.3 Let {pm}, o € P and {F,,} be Lévy computable. Then
{F.} BN N © is computable
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Definition 6.4 (Effective d-irrationally pointwise Fine convergence, [15])

Let {F,.}, F be sequentially Fine computable.
{F,.} converges effectively d-irrationally pointwise Fine to F'
= {Fn(x,)} converges effectively to {F(x,)}

for any Fine computable d-irrational sequence {x,}.

Theorem 6.5 ([16]) Let {F,,}, F be sequentially Fine computable.

Assume further that F is effectively Fine continuous. Then,
effective convergence of {pun} to p is equivalent to

effective d-irrationally pointwise Fine convergence of {F,,} to F.

Theorem 6.6 Let {F,,}, F be Fine computable. Then,

{F.} L re {F..} effectively d-irrationally pointwise converges to F

<

<&
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7. {g¢}-metric on P

Proposition 7.1 Let {g¢} be a computable sequence in C, and
{pm}, {vm} be computable sequences of probability measures. Then,
{d¢g.y (m»sVn)} is computable (double) sequence of reals.

Proposition 7.2 Let {g¢} be an effective separating set. Then,

effective convergence is equivalent to effective {g,}-convergence.

Theorem 7.3 Let S be the set of all computable sequence of probability
measures. Then, (P,d,},S) is a metric space with a computability

structure in the sense of (cf. Definition [13]).
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Example 7.4 {g¢}: an example of an effective separating set in C.

(tm,i = 27 ™Uy,,; Weihrauch)

Figure 5: Graph of un,;

an effective enumeration of the set of all

finite linear combinations with rational coefficients of {uy, ; }men,icz.

Example 7.5 Example of an effective separating set in (P, d,,)
an effective enumeration of the set of all

finite convex combinations with rational coefficients of {J;3-=}

Proposition 7.6 Define u,, = Zfﬁfzm (U, —mtiz—m)0_mtiz-m. Then,
{pm} converges to p.

Moreover, {pum} is computable and converges effectively to p, if p is
computable.
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Definition 7.7 (Effective compactness, [13])
(X,d,S) is said to be effectively totally bounded if there exist an
effective separating set {e,,} and a recursive function a such that

a(p)

X = U Bx(en,27?) for all p.

n=1
If (X,d,S) is effectively totally bounded and effectively complete, then
we say that (X, d, S) is effectively compact.

Proposition 7.8 (P([0, 1]),d,,}) is effectively compact.

Weihrauch [27] had used t,,,, = 27" uy,,m and defined the representation
oy. The metric space (P([0, 1]), p) is equivalent to (P([0,1]),d,,¢q,})-
He also defined representations d,,, and 8/ and proved these
representations are equivalent. (Theorem 4.2 in [27]).

By Kamo [8], dy, ;-computability is equivalent to 4, -computability.

Q &
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8. Comments on Proofs
Proposition If {u.,} is computable and converges effectively to u,

then p is computable.

The following Lemmas and Proposition are used many times.

Lemma 8.1 (Monotone Lemma, [19])
Let {xn i} be a computable sequence of reals which converges
monotonically to {x,} as k tends to infinity for each n.

Then, {x,} is computable if and only if the convergence is effective.

—-n—1 -n n n—+1

Figure 6: Graph of w,
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The following Proposition is fundamental.

Proposition 8.2 (Effective tightness of an effectively convergent
sequence, Effectivization of Lemma 15.4 in [25])

If a computable {p,,} effectively converges to p,

then there exists a recursive function a(k) such that um(w;(k)) < 27k
for all m.

It also hold that p,,([—a(k) — 1,a(k) + 1]°) < 27F for all m.
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9. Characteristic Functions (CCA2012)
Theorem 9.1 If {pm} is computable, then {p,,} is uniformly computable.

Theorem 9.2 (Effective Glivenko, cf, Theorem 2.6.4 in Ito [6])
Let {¢m} and ¢ be computable. Then, {1} converges effectively to p

if {pm} converges effectively to ¢ .

Theorem 9.3 (Effectivization of Theorem 2.6.3 in Ito [6]) Let {u.n} and p be
computable. Then, {p,} converges effectively (compact-uniformly) to ¢ if {pm}
converges effectively to p.

Theorem 9.4 {pu.,} is computable if {p} is computable.

Theorem 9.4 is the converse to Theorem 9.1. So, we obtain:

Theorem {p,,} is computable if and only if {p,} is computable.

Theorem 9.5 (Effective Bochner’s theorem) In order for ¢(t) to be a characteristic
function of a computable probability measure, it is necessary and sufficient that the
following three conditions holds.

(i) ¢ is positive definite. (ii) ¢ is computable. (iii) ¢(0) = 1.

Q &



<13Nancy> 36
10. De Moivre-Laplace Central Limit Theorem (CCA2012)

The Central Limit Theorem is one of important theorems in probability theory and in
statitics.

Let (2, B,P,{X,,}) be a realization of Coin Tossing (Bernoulli Trials) with success
probability p.

Theorem 10.1 (Effective de Moivre-Laplace)
If p is a computable real number, then the sequence of probability measures of
random variables

X e Xy —m =Xy —
Y, = 1+ m P _ Z ¢e—DP
vVmp(1l — p) = V/mpq
converges effectively to the standard Gaussian probability measure.

; it Xe—P itva _ itVP
Y (t) = E(e¥m) = [, B(e™ Vima) = (pevim + ge~ vima)™

By Theorems 10.1 and Theorem 9.2, the following hold:

E(f(Yn)) — \/iz_ﬂ / F(tyz2~5 dt

effectively if f is bounded computable.
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11. Graphs

Figure 7: %50 + %5

1
2
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Figure 8: %50 + %51
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Figure 9: %50 + %52
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m

(2ms Ym)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 10: Distance between F'(x) and F,,(x)
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F(zre+1) — 277 . :
F(xk,e) + 2=k ,
F(zk,e) — 27"

Tit The4+1

Tk Tko+1

I,

Iy oqq

Tk,t4+2

Figure 11:

F_(rie+1) F(riesr1)

Lévy convergence
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Figure 12: Graph of singular G

h2

hy

h2
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d

2—“(22_0"T ds

d>

2—&(2)

? dx
g

D R
0 1 2

Figure 13: Graph of F and LF
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uniform convergence

at continuity point of x(t) Ji , M - convergence

' !

pointwise convergence suitable condition on

_|_

M, at continuity point of x(t) modulus of (dis)continuity

!

convergence of measure

Figure 14: Relations between Convergences by Skorokhod (case R)

M, : H-metric between Gr and Gg

M, + Jy = J;

44
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, d
a,c b,c
‘ vigdlv®] =3, vodu®)] =3
F-NC - a,d
| ¢ viedly(®)] =0
N b mq

-4NX-a Vio,1] [x(t)] = V[o 1] [:c(t)]

,,,,, %ﬁ@@n_l

F
|
|
L

Figure 15: Examples of functions in F or D
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12. Computability on F and F «— P

(classical) convergence of {F,,} to F
F,,(x) — F(x) for Va: point of continuity of F’

Postulate I (Computability of pdf F') there is a computable sequence {x,} such that
it is dense in R
F is effectively continuous at x,,:
Ja(n, k) s.t. |y — z,| < 2720 = |F(y) — F(z,)| < 27*
{F(x,)} is computable

Postulate II (Effective convergene of {F,,})
there is a computable sequence {z,,} such that

it is dense in R

each F,, is effectively continuous at «x,,

{F,.(x,)} converges effectively uniformly at {x,}

Proposition 12.1 Suppose that there is a computable sequence {x,} such that it is
dense in R and {F,,(x,)} is computable. Then {pu.,} is computable.

Outline of the Proof. for a single F, u and a single f € C,.
Take a(k) an effective modulus of uniform continuity of f and an integer L such that
f(x) =0 for |x| > L.
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Let yp; = —L +i272k+D) (0 < i < 2L22%+1D 4 1). We can find effectively n(k,i) such
that k) € (Yk,i—1> Yk,i)-

2r2(k+1) 41 .
Then S), = ) ;~7 F(®n(k,i) (F(Tn,i)) — F(Tn@,i—1)) converges effectively to

J £ (@) pp(dew). .
1(F) = Skl = [0 T e (F(@) = F(@ngeiy) p(da)| < 275, 0

Proposition 12.2 {u,,} is computable and {x,} is computable. If F,, is continuous
at {x,}, then F,,(x,) its computable.

Proof. F(x —2") < p(i,) < F(x) < u(@7,) < F(z —2°)
{n(w,,)} and {pu(w},)} are computable
p(w_,) — p(wf,) | 0 = convergence is effective []

Proposition 12.3 Let LF be computable, x be computable and F be continuous at x.
Then F(x) is computable.

Outline of the Proof:
On a neighborhood of z, F is strictly increasing and f(t) =t — f(¢t) is its inverse.
(f = LF)

W s 'w;f,n, and Proposition 4.4 may be useful.

n(g) = Jp9(x)dF(z) = [, g(f(#))df (t) for all g € C,..
Lipschitz continuity implies < [, g(f)(t)dt if g is nonnegative.
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Take g = w ,, w]
Jp wo (F@®)df () = p(w,) < F(z) < p(w],) = [z wl, (F()df(t)
0< wa LFO)F (1) — [wg, (FO)AF(E) = fo{w] L) — s, R(F(®)}df(?)
< Judwi, (F(8) — wy, (F(£)}dt = e ], (F(1) — wy (F(1))
— 0 eﬁ’ectwely (?) []

Conjecture 12.4 Suppose that there is a computable sequence {x,} such that it is
dense in R and {F,,(x,)} is computable. Then {LF,,} is computable.

If this conjecture is false, then we can say that Lévy computability is stronger than
computability of the correspondint probability measures.
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Other Facts

Fact 12.5 Let {p,,} and p be computable, x be computable, F be continuous at x,
and {p.,} converge effectively to p. Then {F,,(x)} converges effectively uniformly to
F at x.

Or converges effectively continuously at x.

Fact 12.6 Let {F,,} and F be Lévy computable and x be computable. If {LF,,}
converges effectively to LF then {F,,(x)} converges effectively uniformly to F at x.

Need to show ng(f(t))df(t) is computable if g is computable.
Put g = uy ;.
effective convergence < effective {g,}-convergence = 77

Fact 12.7 (classical) {F,,} : a sequence of probability distribution functions,
{F,.(x)} : converges (pointwise) to F(x) at every continuity point of F
Then, {F,,(x)} converges uniformly at every continuity point of F

(.')) Ve > 0 Jy; < = < y2 points of continuite of F, |F(y2) — F(y1)| < €
Fin(y1) — F(y1); Fin(y2) — F(y2),
AN s.t. m > N, |Fn(y1) — F(y1)| < €, [Fn(y2) — F(y2)| <€
m > N and |y — x| < min{y; — z, & — y1}, |Fn(y) — F(x)| < 3e€
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Other Conjectures

Conjecture 12.8 Let {f..} is a computable sequence in C; and converges
monotonically to f € C,. Then the convergence is effective and f is computable.

Effective Dini Theorem 12.9 below by Kamo [7]

Theorem 12.9 Kamo [7]) Let (X,d,S) be an effectively compact metric space. Let
{fn} be a computable sequence of real-valued functions on X and f a computable
real-valued function on X. If {f,} converges pointwise monotonically to f as

n — oo, then {f,} converges effectively uniformly to f.

Conjecture 12.10 If X is a effectively compact metric space, then (P(X),dy 1g.}) S
effectively compact for an effective separating set {g.} of P(X).

Theorem 12.11 (Effective decomposition of unity, Theorem 3 in [29])
Let {O,} be an effective local finite r.e. covering of X. Then there exists a
computable sequence of functions {f,} which satisfies

i) falz) >0, (i) fol@)=0ifz ¢ O,, (i) 12, fulz) = 1.
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13. GADLAC

Definition 13.1 A pair of functions (A(t),&(t)) is said to be a parametric
representation of the graph of Gr = {(x,2) | F_(x) < z < F(x), x € R} if
Gr = {(A(t),&(t) | t € R}, &£(t) is continuous and A(t) is continuous and
monotonically increasing.

Definition 13.2 (Skorokhod) {F,,} SM, converges to F: if there exist a parametric
representation (A(t),£(t)) of Gr and a sequence of parametric representations
(Am(t),&€m(t)) of {GF,.} respectively, such that

Tim {sup, | (t) — £(8)] + sup, [Am(t) — A(B)]} = 0

Postulate (1) A gadlac F is said to be SM;- computable if there exist computable
functions (A(t),&(t)) which consist a parametric representation of Gr. (computable
parametric representation)

(2) {F.} SM;-converges effectively to F': if there exist a computable parametric
representation (A(t),&(t)) of Gr and a computable sequence of parametric
representations (A, (t), & (t)) of {Gr, } respectively, such that A,,(t) and &,,(t))
converges effectively to A(t) and £(t)) respectively.
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{F,} Ji-converges to F: There exists a sequence of continuous one-to-one and onto
mappings {A(x)} such that

lim sup |F,(x) — F(A\.(x))| =0, lim sup|\,(x) — x| =0. (1)
n— 00 T n—oo T

This topology is the well known Skorokhod convergence. A equivalent metric which
make complete the space of all gadlaces is discussed in Prokhorov [20] Appendix 1 and
in Kolmogorov [9] (see also [1], [18]).

Since F'(A(x)) is not continuous, it seems difficult to define the corresponding notion
of computability.

{F,.} SJ; converges effectively to F: if there exist computable one-to-one and onto
mapping {\,.(t)} such that sup, |\,,(t) — t| and sup, |F,, — F(A,(t))| converge
effectively to zero.

{F,} is said to converge uniformly to F at x: For all € > 0, there exists a § > 0
such that
limsup sup |F,(x) — F(z)| < e.
B

n—oo  |y—z|<
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Well known properties

(1) If {F,} converges uniformly to F' at any = in some closed finite interval [a, b],
then the convergence is uniform on [a, b].

(2) (A1(t),&1(¢)) and (A2(t), &2(t)) are parametric representations of some Gr, then
there exists a monotonically increasing function u(t) such that A;(t) = Ax(u(t))

and £, (t) = £(u(t)).

? not continuous, generalized inverse

(3) If {F,} converges to F with respect to one of the four convergences, then {F,}
converges uniformly o F' at any point of continuity of F'.

(4) Let A be the set of all continuous one-to-one and onto mappings from [0, 1] to
[0,1]. Then,

ds(F,G) = inf{e ] X € A,sup [t — A(®)] < € sup [F(t) - GA®)] < e}
(=) inf {sup|F(t) — GA®)| +sup [t — A®)]}

is called the Skorokhod metric. dg-convergence and S.J;-convergence are
equivalent. (D([0,1]),ds) is not complete. (Skorokhod [24])
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A(t) A(S)

(5) Let [[A]| = sup,, and

log

ds(F,G) = inf {e

—G(A(t)] < e} .

Then, ds and dg are equivalent. (D([0,1]),ds) is complete.
(Prokhorov [20], Billingsley [1])

0 if t<;—
(6) Let Fo(t) =q 5(t—3)+; if 53— <t<3+1
1 if t>1+41

Then, {F,,} SM;-converges to D%, but the convergence is not SJ,. So, {F,,} does
not SJ;-converges to D%.

Conjecture 13.3 Effective SM, convergence implies effective uniform convergence at
any computable continuity point of F'.
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14. Two dimensional probability measure
Necessary to handle with the Wasserstein Metric

Definition 14.1 The Lévy (Lévy-Prokhorov) metric dy(u,v) = di(F,G) is defined by
dy(F,G) =inf{e >0 | F(x — e,y —€) — e < G(z,y) < F(x + €,y + €) + ¢, for all x}

Gr = {(w,y9z) | F(m—, y—) <z< F(may)}
bi={z+x=s}n{z+y=1t}, (s,t,v) =GrNLs:
LF(s.t):=v



